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Continuum traffic model with the consideration of two delay time scales
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This paper presents a continuum traffic model. The derivation of this model is based upon the assumption
that the stream velocityu reaches the equilibrium velocityue within the relaxation timeT, while the equilib-
rium velocity ue is adjusted to be attained through the driver’s reaction timet r . It is also assumed that the
former delay time scale is greater than the latter. A motion equation with nonconstant propagation velocity of
a disturbance in traffic flow is derived that can reflect the anisotropy of disturbance propagation in real traffic,
unlike some other higher-order continuum models. It indicates that in our model the undesirable ‘‘wrong-way
travel’’ phenomenon and gaslike behavior have been eliminated. The formation and diffusion of traffic shock
can be better simulated.
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention from scientists because of the increasing requ
ments of traffic construction and management, and also
to a variety of interesting nonlinear phenomena occurring
traffic systems. The theory of traffic flow is a subject usi
mathematics and physics to describe the characteristic
traffic, in which mathematical models are established a
then solved. The first paper about traffic flow can be tra
back to the year of 1933, when Kinzer proposed and d
cussed the applicability of the Poisson distribution to tra
flow @1#. After the Second World War, the theory develop
rapidly. In particular, in the 1950s, Lighthill and Whitham
and Richards put forward the kinematics traffic mod
~called the LWR model later! by introducing the hypothesi
of a continuous medium and the continuity equation fro
fluid dynamics@2,3#, and since then traffic flow research h
drawn much attention from fluid dynamicists. In 1971, Pay
proposed a high-order continuum model that includes
effects of the driver’s reaction and acceleration by consid
ing the limiting case of the car-following model@4# and in-
troducing the ‘‘motion equation’’@5#. Later on, he applied his
high-order model to compile the computer simulation p
gramFREFLO @6#. In recent decades, a variety of traffic mo
els, including follow-the-leader models, continuum mode
gas kinetic models, cellular automaton models, etc., h
been presented and some empirical observations repo
~for reviews, see Refs.@7–13#!.

The continuum models of traffic flow aim to describ
through a system of partial differential equations, the evo
tion of traffic states such as the flow rateq(x,t), the vehicle
density r(x,t), and the travel velocity or mean velocit
u(x,t) over spacex and timet. A number of continuum traf-
fic flow models have been proposed over these deca
Among them, the LWR theory@2,3# is the earliest and mos
fundamental. The model is a continuity equation describ
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the conservation of vehicle number:

]r~x,t !

]t
1

]q~x,t !

]x
50. ~1!

Because the equilibrium relation between the velocity a
density is introduced in the LWR model, it is impossible
describe correctly the traffic flows in nonequilibrium state
such as phantom traffic jams or stop-and-go waves@7,14,15#
and forward propagation of disturbances in heavy tra
@16#. Thus, there were no equilibrium curves„r,ue(r)… in
the fundamental diagram obtained by various early obse
tions when traffic was not in equilibrium. Moreover, acce
eration and deceleration flows follow distinctively differe
paths in the phase plane (r,u), and these paths usually form
one or more hysteresis loops@17#. To solve these problems
Payne complemented the continuity equation by a dyna
velocity equation@5#, derived from Newell’s car-following
model @18# by means of the Taylor expansion. He claim
that the velocity of traffic flow will reach equilibrium with
the reaction timeT, and the velocity at the location (x,t) is
determined by the traffic density at location (x1Dx,t) due
to drivers’ anticipation of traffic conditions ahead. His d
namic velocity equation is

du

dt
5

]u

]t
1u

]u

]x
52

1

T
@u2ue~r!#2

v
rT

]r

]x
, ~2!

where the first term on the right side, called the relaxat
term, describes the adaptation of the average velocityu(x,t)
to the density-dependent equilibrium velocityue(r). This
adaptation is exponential in time with the driver reacti
time T. The second term, called the anticipation term, refle
the reaction of identical drivers to the traffic situation in the
surroundings, wherev5(1/2)due(r)/dr is called the antici-
pation exponent. Payne’s model does not require the velo
to satisfy the equilibrium relation and allows some depart
from it. So it can depict real traffic rather well in some r
spects. However, Daganzo@19# and del Castilloet al. @20#
pointed out that the two equations~1! and ~2! violate the
following principles: A fluid particle responds to stimu
©2003 The American Physical Society23-1
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from the front and from behind, but a car is an anisotro
particle that mostly responds to frontal stimuli.

From Eqs.~1! and ~2!, one can derive the two characte
istic velocitiesl15u2Av/T and l25u1Av/T, which de-
termine how traffic disturbances are propagated in a tra
stream. Note that the second characteristic velocityl2 is
larger than the velocityu of the traffic flow. This means tha
waves associated with the second characteristic velocity
ways reach vehicles from behind, either slowing traffic do
or speeding traffic up. This evidently violates the anisotro
of traffic flow and does not accord with real traffic. The ma
reason is that these models tried to mimic the gas dyna
equations and led to so-called gaslike behavior. Aw a
Rascle proposed a model to suppress the gaslike behavi
replacing the space derivative of the density with a conv
tive derivative @21#. The model is a system of hyperbol
equations with no diffusion and no relaxation. Zhang@22#
derived a macroscopic equation with anisotropy and no
laxation from Pipes’s car-following model@4#. Jianget al.
@23# also presented a macroscopic equation with anisotr
derived from a car-following model by adding the relati
velocity. But the propagation velocity of disturbance in th
model is constant independent of the density. In fact,
propagation velocity of disturbance in a Payne-Whitham-l
model should depend on the density@24,25#. In this paper,
we attempt to improve these anisotropic continuum tra
models. The paper is organized as follows. In Sec. II,
establish a continuum model with anisotropy by introduc
the drivers’ reaction timet r and the vehicle relaxation timeT
to the forward anticipation velocity; thus the propagation v
locity of a small disturbance results that is related to
density. We then analyze the characteristics of our mode
Sec. II. A numerical simulation is described in Sec. IV, whi
validates the correctness of the theoretical analysis. All of
results indicate that gaslike behavior does not exist in
model, and the nonequilibrium phase transition and non
ear dynamical phenomena are correctly revealed.

II. MODELING AND ANALYSIS

Payne’s assumption of forward anticipation@5# is impor-
tant and reasonable, but there exists the drawback tha
velocity at location (x,t) was assumed to be determined
the velocity-density relation at location (x1Dx,t) in front,
and to be reached instantaneously. According to the
following theory, the adjustment of the state of traffic flow
performed in a certain vehicle relaxation timeT. The reaction
time t r of the drivers is not included, which differs from th
relaxation time varying with headway@26,27#. The relax-
ation time includes mechanical delay of the vehicles as w
as the drivers’ reaction timet r , about 1 s@28#. When the
traffic is in a near-jamming state, the vehicle relaxation ti
can approach the driver reaction time. According to the d
given by the National Safety Council of the United Stat
the average reaction time of drivers is 0.75 s. Hence,
determine the effect of reaction time on traffic. We consid
that the forward anticipation of velocityu is accomplished in
the relaxation timeT, while this process is completed by a
adjustment with driver reaction timet r to the anticipated one
06612
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ue . The stream velocityu in the relaxation timeT just
reaches the anticipated valueue corresponding to the densit
in time t1t r at the locationx1utr . Thus, we deduce the
following relation:

u~x1uT, t1T!5ue„r~x1utr ,t1t r !…. ~3!

Using the Taylor series expansion for Eq.~3! and neglecting
higher-order terms,

u~x,t !1
]u

]t
T1uT

]u

]x
1O~t2!

5ue~r!1
due

dr S t r

]r

]t
1utr

]r

]x D1O~ t r
2!. ~4!

Equation~4! can be rearranged as

]u

]t
1u

]u

]x
5

ue~r!2u

T
1

t r

T

due

dr S ]r

]t
1u

]r

]xD . ~5!

Applying Eq. ~1!, we have

]u

]t
1S u1r

t r

T~r!

due

dr D ]u

]x
5

ue~r!2u

T~r!
, ~6!

wherec52r@ t r /T(r)#due /dr>0 is the ‘‘sonic speed’’ in
traffic flow, at which small disturbances propagate relative
a moving traffic stream.T(r) is the relaxation time, which is
a nonlinear function of the densityr and can be expressed a
@29#

T~r!5t rF11
E

11~r/rm!G , ~7!

whererm is the critical density,t r is the constant reaction
time, u is a parameter (u.0), andE is a constant (E.0)
that denotes the difference of reaction times between c
gested and uncongested traffic situations. Asr→0, T(r)
→(E11)t r ; while asr.rm , T(r)→t r . This means that a
high density levels the relaxation time is smaller, and at l
density levels the relaxation time is larger. Moreover, d
Castillo and Bentez@30# have investigated the gener
velocity-density model and attempted to provide a gene
characterization of velocity-flow relationships. Two were o
tained. One is the exponential curve given by

ue5uf H 12expFcjam

uf
S 12

r jam

r D G J . ~8a!

The other, called the maximum sensitivity curve, is e
pressed by

ue5uf X12expH 12expFcjam

uf
S r jam

r
21D G J C, ~8b!

where uf is the free-flow velocity;cjam is the propagation
velocity of a disturbance under the jam densityr jam. Both
relationships satisfy the properties of traffic flow, where t
free-flow velocity is the limit of the desired velocity, vehicle
3-2
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CONTINUUM TRAFFIC MODEL WITH THE . . . PHYSICAL REVIEW E 68, 066123 ~2003!
are stopped at the jam density, and the velocity decre
with increasing density. Thus we have established a c
tinuum model with the propagation velocity of small distu
bances depending on the traffic density, which is consis
with other high-order Payne-Whitham-like models. It
comprised of two partial differential equations as follows

]r~x,t !

]t
1

]q~x,t !

]x
50, ~9a!

]u

]t
1~u2c!

]u

]x
5

ue~r!2u

T~r!
, ~9b!

with

c52r
t r

T~r!

due

dr
>0.

If the difference between the relaxation and reaction term
not considered, that is,T(r)5t r , Eq. ~9b! will be reduced to
the anisotropic higher-order model developed by Zhang@22#,
but the ‘‘sonic speed’’ in our model is directly derived with
out any assumptions. So this model might have a unive
meaning. We can analyze the characteristics of Eqs.~9a! and
~9b!, and obtain the characteristic velocity and correspond
eigenvectors

l15u, l25u2c, ~10a!

r 15S 1
ue8~r! D , r 25S 1

0D . ~10b!

The model of Eqs.~9a! and ~9b! is therefore strictly hyper-
bolic. Note that the motion equation in the model does
explicitly depend on the density gradient. Becausec>0, the
characteristic velocity is no greater than the traffic veloc
We can validate the anisotropy of traffic flow using the fo
lowing example constructed by Daganzo@19#: We try to find
the traffic evolution, if at the initial instant

u50, r5rmaxH~x!, ; x<A, t50 ~A.0!,

u50, x5A, t.0, ~11!

whereH(x) is the Heaviside unit step function, andrmax is
the maximum density. Under these initial conditions, the c
rect solution should be that nothing would happen, nam
vehicles do not move anddu/dt50. Substitutingdu/dt50
in Eq. ~9b!, we have

u~x,t !5ue>0. ~12!

This means the vehicles always move forward and there i
backward-travel problem in our model.

III. QUALITATIVE PROPERTIES OF THE MODEL

Before the numerical simulations are carried out, we w
analyze the disturbance propagation and linear stability
our model.
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A. Disturbance propagation

To study how a small disturbance propagates, we ass
an equilibrium solution (r0 ,u0) with a small disturbance
„j(x,t),w(x,t)…, where „j(x,t),w(x,t)… are sufficiently
smooth functions ofx and t. Substituting the small distur
bance into Eq.~9b!, using the Taylor series expansions a
neglecting higher-order terms ofj(x,t), w(x,t), we get

S j
wD

t

1S u0 r0

0 u02c0
D S j

wD
x

5S 0

ue8~r0!j2w

T~r!
D , ~13!

wherec052r0ue8(r0)t r /T(r). By eliminatingw from Eq.
~13! we can obtain

t@] t1~u02c0!]x#~] t1u0]x!j5] tj1C~r0!]xj, ~14!

where C(r0)5(r0ue8(r0)t r /T(r)1u0) and (] t1u0]x)j
5] tj1u0]xj is the wave operator, where] t and ]x denote
partial derivatives with respect to time and space. Equa
~14! implies that any small disturbance in the model prop
gates in the form of two waves: the slower wave travels a
velocity u02c0 and the faster wave travels at the velocityu0
of the traffic stream that carries it. The propagating velocit
of the two waves mean that the disturbances are car
downstream by the vehicles that generated them and, on
other hand, propagate upstream through a line of vehi
that are behind the disturbance-generating vehicles. Nei
wave travels faster than the traffic that carries it. The mo
is therefore anisotropic, and we shall call it the anisotro
nonequilibrium traffic model.

B. Linear stability analysis

We conduct a linear stability analysis of Eqs.~9a! and
~9b! governing the development of the disturbanc
„j0(x,t),w0(x,t)… of the quantities (r,u) from a certain
equilibrium value (r0 ,u0). Introducing a special form of the
small disturbances,

j~x,t !5j0 exp~vt2 ikx!, w~x,t !5w0 exp~vt2 ikx!,

in the linearized equations, we obtain

j0~v2u0ik !2r0w0ik50,

w0S v2~u02c0!ik1
1

T~r! D5
ue8~r0!

T~r!
j0 . ~15!

Eliminating j from Eq. ~15! yields

~v2u0ik !21c0~v2u0ik !ik1
~v2u0ik !

T~r!

5
r0

T~r!
ue8~r0!ik. ~16!

When Re(v)>0, the traffic flow is in a stable state. We hav

u02c0>u01r0ue8~r0!. ~17!
3-3
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Y. XUE AND S.-Q. DAI PHYSICAL REVIEW E68, 066123 ~2003!
Thus, the condition of stability is

c0<2r0ue8~r0!⇒t r<T. ~18!

The criterion of stability indicates that the flow is stab
when drivers can respond to the changes ahead within
reaction time; otherwise the flow is unstable, which is co
sistent with one of Ku¨hne et al.’s models atm50 @31,32#.
Unstable traffic will lead to the occurrence of a traffic flo
pattern like stop-start waves or a spontaneous traffic jam

IV. NUMERICAL COMPUTATION

We use the finite difference method to discretize Eqs.~9a!
and ~9b!. For the discretization of the conservation equat
~9a!, we use the difference format adapted to the phys
meaning of traffic flow and apply the first-order upwin
scheme to the motion equation~9b! @33,34#. Thus, we have

r i
j 115r i

j1
Dt

Dx
r i

j~ui
j2ui 11

j !1
Dt

Dx
ui

j~r i 21
j 2r i

j !. ~19!

~I! when traffic is heavy@ui
j,c0(r i

j )#,

ui
j 115ui

j1
Dt

Dx
@c~r i

j !2ui
j #~ui 11

j 2ui
j !1

Dt

T~r!
@ue~r i

j !2ui
j #.

~20!

~II ! when traffic is light@ui
j>c0(r i

j )#,

ui
j 115ui

j1
Dt

Dx
@c~r i

j !2ui
j #~ui

j2ui 21
j !1

Dt

T~r!
@ue~r i

j !2ui
j #,

~21!

where the indexi represents the road section and the indej
represents time. To investigate congestion and dissipatio
the traffic flow, we use two Riemann initial conditions. W
first assume that

ru50.04 veh/m, rd50.18 veh/m, ~22a!

ru50.18 veh/m, rd50.04 veh/m, ~22b!

whereru and rd are, respectively, the upstream and dow
stream densities. Equation~22a! corresponds to the appea
ance of shock waves when free-flow traffic meets stop
vehicles, while Eq.~22b! corresponds to the rarefaction wav
as a queue dissolves. Two initial conditions are

uu5ue~ru!, ud5ue~rd!. ~23!

Free boundary conditions are applied here@25#. Consider a
section of freeway 20 km long, divide it into 100 cells, a
take the time interval as 1 s. According to real observat
and the parameter identification process, the values of
parameters are chosen as follows:

uf530 m/s, r jam50.2, veh/m, cjam56.0 m/s,

rm50.168 veh/m, E50.5, u51.5,

vehicle relaxation timeT057 s @35#,

driver reaction timet r50.75 s@28#.
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The computational results under the two Riemann ini
conditions~22a! and ~22b! are shown in Figs. 1~a! and 1~b!
and Figs. 2~a! and 2~b!, respectively.

From Figs. 1 and 2, we can see that different Riema
initial conditions lead to different fronts between the co
gested and free-flow traffic. Figure 1 shows how t
backward-moving shock wave front evolves under the c
dition ~22a!. This means that traffic becomes more co
gested, which we often see in rush hours. Figure 2 sh
how the rarefaction wave front evolves under the condit
~22b!. It is a queue in the process of dissolution, which
consistent with our daily experiences in real traffic. T
variations of the propagation velocityc(r) of a disturbance
with the density and its temporal evolution processes un
the two Riemann initial conditions~22a! and ~22b! are
shown, respectively, in Figs. 3~a! and 3~b!. From Fig. 3~a!,
we can clearly understand that the propagation velocity o
disturbance is density dependent and decreases with a
crease of the density. Figure 3~b! shows that the tempora
evolution of the propagation velocityc(r) of a disturbance
with different values of the driver reaction timet r in the 50th
cell. These curves indicate that the driver reaction timet r has
a remarkable effect on the propagation velocity of the dist
bance. The lower curves labeled~2! correspond to the Rie
mann initial conditions of~22a!, which shows that the
change in the propagation velocity of a disturbance in
50th cell is very drastic when a shock wave occurs. T

FIG. 1. Shock waves under the Riemann initial conditions
Eq. ~22a!: temporal evolution of~a! densityr(x,t) and~b! velocity
u(x,t).
3-4
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CONTINUUM TRAFFIC MODEL WITH THE . . . PHYSICAL REVIEW E 68, 066123 ~2003!
upper curves labeled~1! correspond to Eq.~22b!, indicating
that the propagation velocity of a disturbance in the 50th
approaches a high value when a queue is dissolving. All
results illustrate that the propagation velocity of a dist
bance is very large during queue dissolution, but is redu
to a smaller value in the case of congestion.

V. CONCLUSION

In this paper, we assume that the stream velocityu
reaches the equilibrium velocityue within the driver relax-
ation time while the equilibrium velocityue is attained
through adjustment of the driver reaction time in this d
namic process. We derive the motion equation with a n
constant propagation velocity of disturbance in the tra
flow. The model has anisotropy, which is confirmed by t
formation and diffusion of a traffic shock wave in numeric
simulations and validated by using the model. The mo
reflects that the propagation velocity of a disturbance is v
large in the free-flow state, but small in congested traf
consistent with real situations. Moreover, the model has
analogy with Zhang’s, Aw and Rascle’s, and Jiang and W
models. It can describe certain traffic phenomena that ev
the LWR model, such as vehicle clustering and forwa

FIG. 2. Rarefaction waves under the Riemann initial conditio
of Eq. ~22b!: temporal evolution of densityr(x,t) and~b! velocity
u(x,t).
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propagation of disturbances in dense traffic@22# and model-
ing stop-and-go traffic@23#. When we carry out traffic mea
sures on the ground and overhead traffic in Shanghai,
also find differences between the reaction timet r and the
relaxation time. The relaxation timeT is about 7 s while the
driver reaction timet r is about 1 s@35#. When the vehicle
relaxation timeT approaches the driver reaction timet r at a
red light at an intersection, small disturbances caused
some drivers late for this change in dense traffic will
propagated fast through the vehicle stream and enlarged
time, and finally lead to a traffic jam, which corresponds
the propagation velocity of disturbancec(r) in Fig. 3~b!
under the two Riemann initial conditions of Eq.~22a!. In
contrast, when the traffic stream dissipates, the disturba
decrease with time. All the results show that the relationsh

s

FIG. 3. The variation of propagation velocityc(r) of a distur-
bance of vehicle density and its temporal evolution under the
Riemann initial conditions of Eqs.~22a! and ~22b!, respectively
labeled as~1! and ~2!.
3-5
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between the relaxation timeT and the driver reaction timet r

are very important for traffic flow. Hence, we plan to explo
traffic bottleneck effects in our future work, together wi
numerical approximations, experimental validation, and
tension of the model to describe traffic on real roads.
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